Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20237689

ABSTRACT

Like the challenges and skepticism that faced the antibody therapeutics field over a decade ago, RNA therapeutics is facing the same. And, like the antibody therapeutics field, we are beginning to realize the clinical impact of RNA therapeutics amiss these challenges. This is most clearly highlighted with the recent approval of mRNA vaccines to prevent against SARS-CoV-2 and the first FDA approved RNAi drugs targeted to the liver. Unfortunately, RNA-based drugs targeted to cancer cells is lagging behind, even with countless years of work that has revealed the power of using RNAi for treating oncological diseases. Lack of success in this space is attributed to inability to deliver RNAi safely and effectively. A successful delivery agent requires multiple features. First, the agent must deliver the RNA specifically to the intended cells. Second, the agent must have a large therapeutic window, meaning that toxicity, if observed, should occur at doses that are orders of magnitude higher than the therapeutic dose. Third, if delivery of the RNA is by way of a specific ligand and receptor pair, as is the case herein, the RNA must successfully escape the endosome. Simply swelling the endosome is not enough if noncovalent interactions between the ligand and the receptor cannot be disrupted. Fourth, the RNA should include appropriate stabilizing modifications to increase intracellular half-life that will reduce dosing and cost. Through hard work and dedication in this space, we have come up with an inclusive, easily synthesized, intramolecular molecule that achieves all of these essential features. Moreover, the ligand used to achieve successful delivery is also being evaluated for imaging tumors localized in the central nervous system. Here, the challenges we face, the hurdles we have overcome, and the barriers that still remain to achieve success in revealing the clinical potential of miRNA as anti-cancer therapeutics will be presented.

2.
Viruses ; 15(5)2023 05 16.
Article in English | MEDLINE | ID: covidwho-20235842

ABSTRACT

miRNAs, small non-coding RNAs that regulate gene expression, are involved in various pathological processes, including viral infections. Virus infections may interfere with the miRNA pathway through the inhibition of genes involved in miRNA biogenesis. A reduction in the number and the levels of miRNAs expressed in nasopharyngeal swabs of patients with severe COVID-19 was lately observed by us, pointing towards the potential of miRNAs as possible diagnostic or prognostic biomarkers for predicting outcomes among patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The objective of the present study was to investigate whether SARS-CoV-2 infection influences the expression levels of messenger RNAs (mRNAs) of key genes involved in miRNA biogenesis. mRNA levels of AGO2, DICER1, DGCR8, DROSHA, and Exportin-5 (XPO5) were measured by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) in nasopharyngeal swab specimens from patients with COVID-19 and controls, as well as in cells infected with SARS-CoV-2 in vitro. Our data showed that the mRNA expression levels of AGO2, DICER1, DGCR8, DROSHA, and XPO5 were not significantly different in patients with severe COVID-19 when compared to patients with non-severe COVID-19 and controls. Similarly, the mRNA expression of these genes was not affected by SARS-CoV-2 infection in NHBE and Calu-3 cells. However, in Vero E6 cells, AGO2, DICER1, DGCR8, and XPO5 mRNA levels were slightly upregulated 24 h after infection with SARS-CoV-2. In conclusion, we did not find evidence for downregulation of mRNA levels of miRNA biogenesis genes during SARS-CoV-2 infection, neither ex vivo nor in vitro.


Subject(s)
COVID-19 , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , COVID-19/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA-Binding Proteins/metabolism , RNA, Messenger/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Karyopherins/genetics
3.
Macromol Biosci ; : e2300102, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2325010

ABSTRACT

The efficacious delivery of therapeutic nucleic acids to cancer still remains an open issue. Through the years, several strategies are developed for the encapsulation of genetic molecules exploiting different materials, such as viral vectors, lipid nanoparticles (LNPs), and polymeric nanoparticles (NPs). Indeed, the rapid approval by regulatory authorities and the wide use of LNPs complexing the mRNA coding for the spark protein for COVID-19 vaccination paved the way for the initiation of several clinical trials exploiting lipid nanoparticles for cancer therapy. Nevertheless, polymers still represent a valuable alternative to lipid-based formulations, due to the low cost and the chemical flexibility that allows for the conjugation of targeting ligands. This review will analyze the status of the ongoing clinical trials for cancer therapy, including vaccination and immunotherapy approaches, exploiting polymeric materials. Among those nanosized carriers, sugar-based backbones are an interesting category. A cyclodextrin-based carrier (CALAA-01) is the first polymeric material to enter a clinical trial complexed with siRNA for cancer therapy, and chitosan is one of the most characterized non-viral vectors able to complex genetic material. Finally, the recent advances in the use of sugar-based polymers (oligo- and polysaccharides) for the complexation of nucleic acids in advanced preclinical stage will be discussed.

4.
BioPharm International ; 36(4):15-17, 2023.
Article in English | EMBASE | ID: covidwho-2317268
5.
Microb Cell Fact ; 22(1): 97, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2316790

ABSTRACT

The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina, Ascomycota) is a well-known lignocellulolytic enzymes-producing strain in industry. To increase the fermentation titer of lignocellulolytic enzymes, random mutagenesis and rational genetic engineering in T. reesei were carried out since it was initially found in the Solomon Islands during the Second World War. Especially the continuous exploration of the underlying regulatory network during (hemi)cellulase gene expression in the post-genome era provided various strategies to develop an efficient fungal cell factory for these enzymes' production. Meanwhile, T. reesei emerges competitiveness potential as a filamentous fungal chassis to produce proteins from other species (e.g., human albumin and interferon α-2b, SARS-CoV-2 N antigen) in virtue of the excellent expression and secretion system acquired during the studies about (hemi)cellulase production. However, all the achievements in high yield of (hemi)cellulases are impossible to finish without high-efficiency genetic strategies to analyze the proper functions of those genes involved in (hemi)cellulase gene expression or secretion. Here, we in detail summarize the current strategies employed to investigate gene functions in T. reesei. These strategies are supposed to be beneficial for extending the potential of T. reesei in prospective strain engineering.


Subject(s)
COVID-19 , Cellulase , Humans , Prospective Studies , SARS-CoV-2
6.
Pneumologie ; 77(Supplement 1):S107, 2023.
Article in English | EMBASE | ID: covidwho-2291642

ABSTRACT

The COVID-19 pandemic has dramatically underlined the desperate need for novel therapeutic options for treatment of respiratory viral infections to provide fast and efficacious drugs against new upcoming pathogens. RNA interference (RNAi)-based approaches depict a promising alternative to conventional medication, as they can be rapidly adjusted to the respective viral genome or its host cellular interaction partners. Here, we pursued both strategies. We designed and screened nine siRNAs targeting the viral entry receptor ACE2. SiA1, (siRNA against exon1 of ACE2 mRNA) was most efficient, with up to 90 % knockdown of the ACE2 mRNA and protein for at least six days, as assessed by a specially designed fluorescent reporter assay. siA1 application was found to protect Vero E6 and Huh-7 cells from infection with SARS-CoV-2 with an up to ~92 % reduction of the viral burden. In parallel, we exploited the respective sequence in generation miR30a-embedded lentivirally or AAV encoded shRNAs, which performed equally powerful, with shA1 being the most potent. Since the RNA-encoded genome makes SARS-CoV-2 vulnerable to RNA interference (RNAi), we designed and analyzed eight siRNAs directly targeting the Orf1a/b region of the SARS-CoV-2 RNA genome, encoding for non-structural proteins (nsp). We identified siV1, which targets the nsp1-encoding sequence as particularly efficient. SiV1 inhibited SARS-CoV-2 replication in Vero E6 or Huh-7 cells by more than 99 % or 97 %, respectively. It neither led to toxic effects nor induced type I or III interferon production. Of note, sequence analyses revealed the target sequence of siV1 to be highly conserved in SARS-CoV-2 variants. Thus, our results identify the direct targeting of the viral RNA genome (ORF1a/b) by siRNAs as highly efficient and introduce siV1 as a particularly promising drug candidate for therapeutic intervention. Preliminary in vivo pilot experiments carried out in a K18-hACE-2 mice model showed first promising results. Thereby siRNAs complexed with nanoparticles (LP10Y) were applicated systemically by intravenous injection. Mice were intranasally infected with SARS-CoV-2, euthanized 48 hours later, and the viral burden was determined by RT-qPCR in lung homogenates. A positive trend in viral reduction was found in comparison to corresponding control group.

7.
Biomedical Research and Therapy ; 9(11):5394-5409, 2022.
Article in English | EMBASE | ID: covidwho-2272442

ABSTRACT

Rheumatoid Arthritis (RA) is a systemic, autoimmune, inflammatory disease characterized by synovial hyperplasia, inflammatory cell infiltration in the synovial tissues, and progressive destruction of cartilage and bones. This disease often leads to chronic disability. More recently, activation of synovial fibroblasts (SFs) has been linked to innate immune responses and several cellular signalingpathways that ultimately result in the aggressive and invasive stages of RA. SFs are the major sources of pro-inflammatory cytokines in RA synovium. They participate in maintaining the inflammatory state that leads to synovial hyperplasia and angiogenesis in the inflamed synovium. The altered apoptotic response of synovial and inflammatory cells has been connected to these alterations of inflamed synovium. RA synovial fibroblasts (RASFs) have the ability to inhibit several apoptotic proteins that cause their abnormal proliferation. This proliferation leads to synovial hyperplasia. Apoptotic pathway proteins have thus been identified as possible targets for modifying the pathophysiology of RA. This review summarizes current knowledge of SF activation and its roles in the inhibition of apoptosis in the synovium, which is involved in joint damage during the effector phase of RA development.Copyright © 2022 Biomedpress.

8.
Coronaviruses ; 3(6) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2280701

ABSTRACT

Fruit, vegetables, and green tea contain quercetin (a flavonoid). Some of the diet's most signifi-cant sources of quercetin are apples, onions, tomatoes, broccoli, and green tea. Antioxidant, anticancer, anti-inflammatory, antimicrobial, antibacterial, and anti-viral effects have been studied of quercetin. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, ribonucleic acid (RNA) polymer-ase, and other essential viral life-cycle enzymes are all prevented from entering the body by quercetin. Despite extensive in vitro and in vivo investigations on the immune-modulating effects of quercetin and vitamin C treatment. 3-methyl-quercetin has been shown to bind to essential proteins necessary to convert minus-strand RNA into positive-strand RNAs, preventing the replication of viral RNA in the cytoplasm. Quercetin has been identified as a potential SARS-CoV-2 3C-like protease (3CLpro) suppressor in recent molecular docking studies and in silico assessment of herbal medicines. It has been demonstrated that quercetin increases the expression of heme oxygenase-1 through the nuclear factor erythroid-related factor 2 (Nrf2) signal network. Inhibition of heme oxygenase-1 may increase bilirubin synthesis, an endoge-nous antioxidant that defends cells. When human gingival fibroblast (HGF) cells were exposed to lipo-polysaccharide (LPS), inflammatory cytokine production was inhibited. The magnesium (Mg+2) cation complexation improves quercetin free radical scavenging capacity, preventing oxidant loss and cell death. The main objective of this paper is to provide an overview of the pharmacological effects of quercetin, its protective role against SARS-CoV-2 infection, and any potential molecular processes.Copyright © 2022 Bentham Science Publishers.

9.
Medical Immunology (Russia) ; 24(5):1065-1074, 2022.
Article in Russian | EMBASE | ID: covidwho-2233583

ABSTRACT

Comparative analysis of antiviral protective mechanisms in protozoa and RNA interference of multicellular organisms has revealed their similarity, also providing a clue to understanding the adaptive immunity. In this article, we present the latest evidence on the importance of RNA-guided gene regulation in human antiviral defense. The role of neutralizing antibodies and interferon system in viral invasion is considered. The new concept has been introduced, i.e., antiviral protection of any living organism is based on the intracellular RNA-guided mechanisms. Simple and effective defense against viruses is that spacer segment of the viral DNA is inserted into the cellular chromosomes. Upon re-infection, the RNA transcript of the spacer directs nuclease enzymes against the foreign genome. This is a really adaptive immune defense that any cell potentially possesses. In humans, the interferon system provides an additional tool for early suppression of viral infections which shifts the cells to the alert regimen, thus preventing further spread of infection. The main task of the human central immune system is to maintain integrity and combat foreign organisms. Accordingly, a suitable index of acquired antiviral immunity should be a presence of specific spacer markers in DNA samples from reconvalescent persons, rather than detection of neutralizing antibodies, B and T memory cells. This article is addressed primarily to general medical community, and its practical conclusions are as follows: 1. Presence or absence of specific antibodies to SARS-CoV-2 is not a prognostic sign of the disease. Detection of specific antibodies in blood simply reflects the fact that the person has contacted with the viral agent. Absence of antibodies does not mean a lack of such contact, and the persons with high titers of specific antibodies are not protected from re-infection with SARS-CoV-2. 2. PCR testing: The PCR results may remain "false positive" in those subjects who have had COVID-19, if the genetic material is taken from the site of initial virus contraction (mainly, nasopharynx). In our opinion, negative PCR tests for COVID-19 in blood plasma and urine will be a more correct index for the absence of the disease, even with positive PCR tests from the nasopharyngeal samples. 3. It is necessary to draw attention of general practitioners to potential usage of retinol in prevention and treatment of COVID-19, given the importance of RLR receptors in recognition of viral RNAs and positive experience of vitamin A administration in measles, another dangerous viral disease. Copyright © 2022, SPb RAACI.

10.
J Clin Med ; 12(1)2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2166647

ABSTRACT

During the past few years, unexpected developments have driven studies in the field of clinical immunology. One driver of immense impact was the outbreak of a pandemic caused by the novel virus SARS-CoV-2. Excellent recent reviews address diverse aspects of immunological re-search into cardiovascular diseases. Here, we specifically focus on selected studies taking advantage of advanced state-of-the-art molecular genetic methods ranging from genome-wide epi/transcriptome mapping and variant scanning to optogenetics and chemogenetics. First, we discuss the emerging clinical relevance of advanced diagnostics for cardiovascular diseases, including those associated with COVID-19-with a focus on the role of inflammation in cardiomyopathies and arrhythmias. Second, we consider newly identified immunological interactions at organ and system levels which affect cardiovascular pathogenesis. Thus, studies into immune influences arising from the intestinal system are moving towards therapeutic exploitation. Further, powerful new research tools have enabled novel insight into brain-immune system interactions at unprecedented resolution. This latter line of investigation emphasizes the strength of influence of emotional stress-acting through defined brain regions-upon viral and cardiovascular disorders. Several challenges need to be overcome before the full impact of these far-reaching new findings will hit the clinical arena.

11.
Int J Mol Sci ; 24(2)2023 Jan 08.
Article in English | MEDLINE | ID: covidwho-2166609

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.


Subject(s)
COVID-19 , Influenza A virus , Orthomyxoviridae , Humans , SARS-CoV-2 , Influenza A virus/genetics , Nucleotide Motifs , Pandemics , RNA , RNA, Viral/genetics , RNA, Viral/chemistry
12.
Int J Biol Sci ; 18(13): 5070-5085, 2022.
Article in English | MEDLINE | ID: covidwho-2080833

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2), remaining a global health crisis since its outbreak until now. Advanced biotechnology and research findings have revealed many suitable viral and host targets for a wide range of therapeutic strategies. The emerging ribonucleic acid therapy can modulate gene expression by post-transcriptional gene silencing (PTGS) based on Watson-Crick base pairing. RNA therapies, including antisense oligonucleotides (ASO), ribozymes, RNA interference (RNAi), aptamers, etc., were used to treat SARS-CoV whose genome is similar to SARV-CoV-2, and the past experience also applies for the treatment of COVID-19. Several studies against SARS-CoV-2 based on RNA therapeutic strategy have been reported, and a dozen of relevant preclinical or clinical trials are in process globally. RNA therapy has been a very active and important part of COVID-19 treatment. In this review, we focus on the progress of ribonucleic acid therapeutic strategies development and application, discuss corresponding problems and challenges, and suggest new strategies and solutions.


Subject(s)
COVID-19 Drug Treatment , Humans , Pandemics , RNA , SARS-CoV-2
13.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-2066316

ABSTRACT

Nucleic acids play a central role in human biology, making them suitable and attractive tools for therapeutic applications. While conventional drugs generally target proteins and induce transient therapeutic effects, nucleic acid medicines can achieve long-lasting or curative effects by targeting the genetic bases of diseases. However, native oligonucleotides are characterized by low in vivo stability due to nuclease sensitivity and unfavourable physicochemical properties due to their polyanionic nature, which are obstacles to their therapeutic use. A myriad of synthetic oligonucleotides have been prepared in the last few decades and it has been shown that proper chemical modifications to either the nucleobase, the ribofuranose unit or the phosphate backbone can protect the nucleic acids from degradation, enable efficient cellular uptake and target localization ensuring the efficiency of the oligonucleotide-based therapy. In this review, we present a summary of structure and properties of artificial nucleic acids containing nucleobase, sugar or backbone modifications, and provide an overview of the structure and mechanism of action of approved oligonucleotide drugs including gene silencing agents, aptamers and mRNA vaccines.

14.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-2023732

ABSTRACT

The development of novel target therapies based on the use of RNA interference (RNAi) and antisense oligonucleotides (ASOs) is growing in an exponential way, challenging the chance for the treatment of the genetic diseases and cancer by hitting selectively targeted RNA in a sequence-dependent manner. Multiple opportunities are taking shape, able to remove defective protein by silencing RNA (e.g., Inclisiran targets mRNA of protein PCSK9, permitting a longer half-life of LDL receptors in heterozygous familial hypercholesteremia), by arresting mRNA translation (i.e., Fomivirsen that binds to UL123-RNA and blocks the translation into IE2 protein in CMV-retinitis), or by reactivating modified functional protein (e.g., Eteplirsen able to restore a functional shorter dystrophin by skipping the exon 51 in Duchenne muscular dystrophy) or a not very functional protein. In this last case, the use of ASOs permits modifying the expression of specific proteins by modulating splicing of specific pre-RNAs (e.g., Nusinersen acts on the splicing of exon 7 in SMN2 mRNA normally not expressed; it is used for spinal muscular atrophy) or by downregulation of transcript levels (e.g., Inotersen acts on the transthryretin mRNA to reduce its expression; it is prescribed for the treatment of hereditary transthyretin amyloidosis) in order to restore the biochemical/physiological condition and ameliorate quality of life. In the era of precision medicine, recently, an experimental splice-modulating antisense oligonucleotide, Milasen, was designed and used to treat an 8-year-old girl affected by a rare, fatal, progressive form of neurodegenerative disease leading to death during adolescence. In this review, we summarize the main transcriptional therapeutic drugs approved to date for the treatment of genetic diseases by principal regulatory government agencies and recent clinical trials aimed at the treatment of cancer. Their mechanism of action, chemical structure, administration, and biomedical performance are predominantly discussed.


Subject(s)
Muscular Dystrophy, Duchenne , Neurodegenerative Diseases , Child , Female , Genetic Therapy , Humans , Muscular Dystrophy, Duchenne/genetics , Neurodegenerative Diseases/drug therapy , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Proprotein Convertase 9/genetics , Quality of Life , RNA , RNA Interference , RNA Splicing , RNA, Messenger/genetics
15.
BioPharm International ; 35(2):26-29, 2022.
Article in English | Scopus | ID: covidwho-2012042
16.
Mol Genet Metab ; 136(4): 289-295, 2022 08.
Article in English | MEDLINE | ID: covidwho-1984258

ABSTRACT

RNA-based therapies are a new, rapidly growing class of drugs that until a few years ago were being used mainly in research in rare diseases. However, the clinical efficacy of recently approved oligonucleotide drugs and the massive success of COVID-19 RNA vaccines has boosted the interest in this type of molecules of both scientists and industry, as wells as of the lay public. RNA drugs are easy to design and cost effective, with greatly improved pharmacokinetic properties thanks to progress in oligonucleotide chemistry over the years. Depending on the type of strategy employed, RNA therapies offer the versatility to replace, supplement, correct, suppress, or eliminate the expression of a targeted gene. Currently, there are more than a dozen RNA-based drugs approved for clinical use, including some for specific inborn errors of metabolism (IEM), and many other in different stages of development. New initiatives in n-of-1 RNA drug development offer new hope for patients with rare diseases and/or ultra-rare mutations. RNA-based therapeutics include antisense oligonucleotides, aptamers, small interfering RNAs, small activating RNAs, microRNAs, lncRNAs and messenger RNAs. Further research and collaborations in the fields of chemistry, biology and medicine will help to overcome major challenges in their delivery to target tissues. Herein, we review the mechanism of action of the different therapeutic approaches using RNA drugs, focusing on those approved or in clinical trials to treat IEM.


Subject(s)
COVID-19 , Metabolism, Inborn Errors , Humans , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/therapy , Oligonucleotides/therapeutic use , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Rare Diseases/drug therapy , Rare Diseases/genetics
17.
Front Cell Dev Biol ; 10: 854273, 2022.
Article in English | MEDLINE | ID: covidwho-1896660

ABSTRACT

CRISPR-Cas13 technology is rapidly evolving as it is a very specific tool for RNA editing and interference. Since there are no significant off-target effects via the Cas13-mediated method, it is a promising tool for studying gene function in differentiating neurons. In this study, we designed two crRNA targeting regulator of G-protein signaling 8 (RGS8), which is a signaling molecule associated with spinocerebellar ataxias. Using CRISPR-Cas13 technology, we found that both of crRNAs could specifically achieve RGS8 knockdown. By observing and comparing the dendritic growth of Purkinje cells, we found that CRISPR-Cas13-mediated RGS8 knockdown did not significantly affect Purkinje cell dendritic development. We further tested the role of RGS8 by classical RNAi. Again, the results of the RNAi-mediated RGS8 knockdown showed that reduced RGS8 expression did not significantly affect the dendritic growth of Purkinje cells. This is the first example of CRISPR-Cas13-mediated gene function study in Purkinje cells and establishes CRISPR-Cas13-mediated knockdown as a reliable method for studying gene function in primary neurons.

18.
Topics in Antiviral Medicine ; 30(1 SUPPL):67, 2022.
Article in English | EMBASE | ID: covidwho-1880292

ABSTRACT

Background: Human immunodeficiency virus (HIV) and Influenza A virus (IAV) remain a global health concern. Further, emergence of novel coronavirus SARS-CoV-2, which rapidly became global pandemic, increases the concern in biomedical research field for antiviral treatment. To develop new antiviral therapy, we must need to understand the molecular and cellular mechanisms involved in assembly and replication. It is known for some viruses (HIV and IAV) that the host actin cytoskeleton has been involved in various stages of the virus life cycle. Regulation of actin cytoskeleton requires several actin binding proteins, which organize the actin filaments (F-actin) into higher order structures such as actin bundles, branches, filopodia and microvilli, for further assistance in viral particle production. Thus, our objective for this work is to understand the role of these actin regulator proteins, like cofilin and one of its cofactor WDR1, in viral particle assembly and release. Methods: Here we used a combination of different experimental methods like RNA interference, immunoblot, immunoprecipitation, immunofluorescence coupled to confocal and STED fluorescence microscopy. In order to study only virus release, and bypass viral entry, we set up a minimal system for virus-like particles production in transfected cells, giving HIV-1 Gag-VLP, Influenza M1-VLP and SARS-CoV-2 MNE-VLP (developed by D. Muriaux lab). For image analysis, we used Image J software. Statistical analysis was performed with non-parametric t-tests or one-way Anova test. Results: Using siRNA strategy, we have shown that upon knock down of actin protein cofilin or WDR1, HIV-1 and IAV particles production increases in contrario to SARS-CoV-2 VLP release. Further, using immunoprecipitation, we report that HIV-1 Gag is able to form an intracellular complex with WDR1 and cofilin. Similarly, IAV-M1, which like HIV Gag-MA binds with plasma membrane phospholipids, is able to form an intracellular complex with cofilin. These results suggested that virus budding from the host cell plasma membrane seemed restricted by the cofilin/WDR1 complex. Finally, using confocal/STED microscopy on cell producing VLP, we observed actin fibers rearrangement with cell protrusions, suggesting a role for actin in viral particles assembly and release. Conclusion: In conclusion, regulators of actin dynamic are involved in HIV-1 Gag, IAV-M1 and SARS-CoV-2 VLP production but play a differential role in assembly and release of these RNA enveloped viruses.

19.
Topics in Antiviral Medicine ; 30(1 SUPPL):67, 2022.
Article in English | EMBASE | ID: covidwho-1879932

ABSTRACT

Background: A promising approach to tackle the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) could be small interfering (si)RNAs. However, it is unclear so far, which viral replication steps can be efficiently inhibited with siRNAs. Here we report the first-ever in-depth analysis of RNAi-accessible SARS-CoV-2 replication steps. Methods: siRNAs were designed against four genomic regions of SARS-CoV-2. Initial screening of siRNA activity was performed with a dual luciferase reporter assay. Efficacy of siRNAs to terminate various viral replication steps was analyzed by infecting VeroE6 cells with wildtype SARS-CoV-2 or a GFP expressing recombinant SARS-CoV-2 and monitoring viral spread in real-time by time-lapse fluorescence microscopy. Positive and negative sense viral RNA transcripts were distinctly quantified via sense specific cDNA synthesis and reverse-transcriptase quantitative PCR. Finally, the antiviral activity of the siRNAs was primarily evaluated in a highly relevant model, SARS-CoV-2 infected human lung explants. Results: When applied in a prophylactic fashion, siRNAs were able to target genomic RNA (gRNA) of SARS-CoV-2 after cell entry, terminating replication before start of transcription, thereby preventing cytopathic effects. Surprisingly, siRNAs were not active against intermediate negative sense transcripts formed during replication. Targeting sequences that are commonly shared by all viral transcripts indeed allowed a simultaneous suppression of gRNA and subgenomic (sg)RNAs by a single siRNA. However, siRNAs that targeted ORF1 which is solely part of gRNA, presented an enhanced antiviral activity. We show that the reason for this was that siRNAs that targeted the common regions of transcripts were outcompeted by the highly abundant sgRNAs. Based on these findings, we developed a chemically stabilized siRNA, which targets a highly conserved region of ORF1, and which inhibited SARS-CoV-2 replication by >90% ex vivo in explants of the human lung. Conclusion: Our work strongly encourages the development of siRNA-based therapies for COVID-19 and suggests that early therapy start, or prophylactic application, together with targeting ORF1, might be key for high antiviral efficacy.

20.
BMC Res Notes ; 14(1): 401, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1841025

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus causing severe respiratory illness (COVID-19). This virus was initially identified in Wuhan city, a populated area of the Hubei province in China, and still remains one of the major global health challenges. RNA interference (RNAi) is a mechanism of post-transcriptional gene silencing that plays a crucial role in innate viral defense mechanisms by inhibiting the virus replication as well as expression of various viral proteins. Dicer, Drosha, Ago2, and DGCR8 are essential components of the RNAi system, which is supposed to be dysregulated in COVID-19 patients. This study aimed to assess the expression level of the mentioned mRNAs in COVID-19patients compared to healthy individuals. RESULTS: Our findings demonstrated that the expression of Dicer, Drosha, and Ago2 was statistically altered in COVID-19 patients compared to healthy subjects. Ultimately, the RNA interference mechanism as a crucial antiviral defense system was suggested to be dysregulated in COVID-19 patients.


Subject(s)
COVID-19 , MicroRNAs , Humans , RNA Interference , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL